مثالی‌ای بر روز شکل‌دهی قطعات وردهای با استفاده از فرآیند شکل‌دهی چند نقطه‌ای

وحید ریختگر نژاد، ۱ بهروز زارعی، ۲ عباس وفا و صفت

تاریخ دریافت: ۱۰ فروردین ۹۶
تاریخ پذیرش: ۲۶ خرداد ۹۶

چکیده

در سال‌های اخیر، فرآیند شکل‌دهی چند نقطه‌ای به عنوان انعطاف‌پذیری بی‌بالایی آن در جهت کاهش هزینه‌های طراحی و ساخت مورد توجه زیادی قرار گرفته است. این روش سطح احتدای صلب موجود در قالب‌های سنگی با یک جفت مجموعه‌ای از پی‌های قابل تنظیم قابل هم جایگزاری می‌گردد. در این مقاله اصول به‌یاد روش شکل‌دهی چند نقطه‌ای مورد بحث قرار گرفته و امکان مکانیکی یک قطعه وردهای با استفاده از این تکنیک به صورت تجربی و شبیه‌سازی اجرای محصول بررسی شده است. جرایدیکاری و تورفنتیکی از مدل‌آرایی‌های گزینه‌ای بوده که در فرآیند شکل‌دهی چند نقطه‌ای می‌باشد. با تقریب مناسب پارامترهای فرآیند می‌توان قطعات سالمی را به صورت سطح بالا و توسعه ضخامت یک‌واکت شکل‌دهی کرد. نتایج بسته به محدوده استفاده که فرآیند شکل‌دهی چند نقطه‌ای می‌تواند به عنوان یک روش کارآمد و اقتصادی در شکل‌دهی قطعات تکی شکل‌دهی مهندسی متنوع مورد استفاده قرار گیرد.

واژگان کلیدی: شکل‌دهی چند نقطه‌ای، شبیه‌سازی اجزای محصول، جرایدیکاری، تورفنتیکی.

۱. مقدمه

فرآیند شکل‌دهی وردهای فلزی از نظر تکنولوژیکی یکی از مهم‌ترین شاخص‌های فرآیند‌های شکل‌دهی-دهی قطعات محسوب می‌شود، زیرا بر اغلب قطعات بدن‌های خودرو، قسمت اعظم بدن‌های هواپیما و سایر محصولات صنعتی، با استفاده از فرآیند شکل‌دهی چند نقطه‌ای که بر روی وردهای فلزی صورت می‌گیرد، به‌طور کامل ساخته می‌شوند. در این فرآیند، قطعات از مجموعه‌ای از قطعات یکپارچه تغییر شکل پلاستیکی مطلوب در یک ماهه بخشهای اندازه‌گیری می‌گردد. این قابلیت قطعات عموماً با مشابه‌کاری و یا ریختگری یک بلکه جایگزین سطح بیش‌ساخته می‌شود و تنها برای توسعه کافی قطعه با مشخصات هندسی خاصی می‌تواند مورد استفاده قرار گیرد. بنابراین این فرآیند قطعات متنوعی تغییر شکل دارد و با استفاده از قالب‌های مختلفی وجود خواهد داشت. طراحی و ساخت قالب‌های جدید سخت‌بندی و هزینه بالایی بوده و فضایی زیادی برای تغییر قالب‌ها، اما این محدودیت‌ها شود. در تجربیات اندیس‌ها و روش‌های فوق برای تغییر نقطه‌ها، تکی و قطعات دسته‌ای با تیراق تپنده غیر‌کال‌شادی خواهد بود. توصیه روش‌های شکل‌دهی انعطاف‌پذیر می‌تواند به عنوان یک راهکار مناسبی در جهت رفع مشکلات فوق طرح قردر ایده استفاده از روش‌های شکل‌دهی انعطاف‌پذیر دست کم به بخش از سی سال پیش بر می‌گردد [۱] و (الزیک و هاردت [۲]) با ارائه مفهوم قالب غیرپر نگرش شکل، طراحی مکانیکی یک قالب کاهش را مورد مطالعه قرار داده و تأکید کرده‌اند. این روش‌ها و همکارانش [۳] به نظر بازاری از هزینه‌های ساخت قالب، یک قالب کاهش را مورد مطالعه قرار داده و تأکید کرده‌اند. این روش‌ها و همکارانش [۴] قالب انعطاف‌پذیری را جهت شکل‌دهی قطعات تکی طراحی کرده و

v. rikhtegar@yahoo.com

۱. دانشجوی کارشناسی ارشد دانشگاه آزاد اسلامی واحد علم تحصیلات تهران
2. دانشجوی کارشناسی ارشد دانشگاه صنعتی نوشهر (ارتباط با
3. دانشیار دانشگاه امام خمینی (ع)
در ادامه با ساخته ی یک قالب اولیه، عملی ی پاره وون روش ارائه شده را بررسی کنید.

با کارگیری روش‌های شکل‌دهی انعطاف‌پذیر، به مفهوم فرآیند شکل‌دهی چند نقطه‌ای اولین فرم توزیع می‌گذاریم و همکارانش [1] ارائه گردید. آنان با طبقه‌بندی مجدد مختلف شکل ها چند نقطه‌ای استفاده از روش‌های فوق را در همه ی قطعات و روش‌های مطالعه قرار دادند. محققان مذکور همچنین روش شکل‌دهی چند نقطه‌ای موضوعی را برای شکل‌دهی سطوح و روش‌هایی با ابعاد بزرگ با استفاده از یک قالب یا کوچک ارائه کردند [5 و 1].

با این وجود، اکثر تحقیقات ارائه شده از سوی محققان مختلف محدود به استفاده از این تکنیک در شکل‌دهی سطوح و روش‌هایی می‌باشد. طبق استعمال تحقیقات بسیار کمی در مورد به کارگیری این روش در کشور عراق قطعات صنعتی صورت گرفته است. در این مقاله اصول به‌نیاز فرآیند چند نقطه‌ای چند نقطه‌ای مورد بحث قرار گرفته است. کنترل بررسی فرآیند فوق مجموعه قالب‌ها یا مچ‌ها چند نقطه‌ای در ارائه و به‌هیله شکل‌دهی و ساخته‌شده امکان شکل‌دهی یک قطعه ورودی می‌باشد. آلیاژ آلومینوم‌ی 1100-O از این تکنیک به صورت صحیح و شیب‌سازی اجرای محدود مورد مطالعه قرار گرفته است. توزیع ضخامت قطعات شکل داده شده تحت شرایط مختلف مورد بررسی قرار گرفته است. عبور به وجود آمده در فرآیند شکل‌دهی چند نقطه‌ای نشان‌رسانی یا بهبود گرده و راهکارهای مناسب جهت دهی قطعات سالم ارائه شده است.

-2 اصول فرآیند شکل‌دهی چند نقطه‌ای

فرآیند شکل‌دهی چند نقطه‌ای یک روش انعطاف‌پذیر جهت تولید شکل‌دهی ورودی با هندسه‌ای به‌جای صورت دهی [1] شامل شکل‌دهی ورودی و شکل‌دهی چند نقطه‌ای است. مطالعه را به‌دست افتاده‌ای استفاده از ورود کننده‌ای می‌دهد. مطالعه ورودی گذاری‌ها و روش‌های پیش‌بینی سبب می‌شود که مکان‌های از انتخاب‌های مناسبی از گرادو و ورق‌های مشابه به‌بسته‌ی قطعه و سایر اجزای قابل

1392

40
در فرآیند شکل‌دهی چند نقطه‌ای، خصوصیات لایه استیک از قابل توجهی بر روی رفتار تغییر شکل ورق فازی دارد. به علت مقاومت بالایی پلی پورتان در برای ساوش و روش، دو انجام آزمایشات و شیبی سازی ها از دو SA لایه پلی پورتان با سختی 80 استفاده شده است. شکل (1) نمودار نشان می‌دهد که استفاده از آزمایش فشار ASTM D575-91 لایه پلی پورتان استفاده شده است. این پوشه را نشان می‌دهد که داههای 80 درصد از نمودار فوق به نرم آفرینی معرفی گردد. از المان‌های C3D8R اجرا شده است. سایر تجربه‌ها این به صورت پوسته‌ای صلب مدل شده‌اند و مشابه آنها با استفاده از المان‌های انجام گرفته‌است. جهت مدل کردن اصطکاک R3D4 مابین سطح‌های مختلف قابل و ورق از مدل اصطکاکی کولب استفاده گردیده است. مطابق با مرجع [6] ضرب اصطکاکی مابین سطح ورق و سطح اجرای قابل، محفظور ورق و لایه پلی پورتان و لایه پلی پورتان با سطح پینها به ترتیب 0.1 و 0.02 فرض شده است.

مدلسازی شفه است. مشخصات ابعاد اجرای مختلف قابل در جدول (1) ارائه شده است. ورق به صورت پوسته‌ای اجرای شکل باید اندازه و برای مش بندی. سری S4R استفاده است. جنس ورق الکترونیک جهت پرداخت در آزمایشات و شبیه‌سازی آلیاژ آلومینیوم AI1100-O می‌باشد. که خواص فیزیکی این ماده، به عنوان خواص مکانیکی بسته آمده و آزمان کششی در جدول (2) نشان داده شده است.

<table>
<thead>
<tr>
<th>پارامتر</th>
<th>مقصد</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_0 = 1$</td>
<td>(mm)</td>
</tr>
<tr>
<td>$\rho = 2710$</td>
<td>(kg/m3)</td>
</tr>
<tr>
<td>$E = 71$</td>
<td>(GPa)</td>
</tr>
<tr>
<td>$\nu = 0.33$</td>
<td></td>
</tr>
<tr>
<td>$\sigma = 41.80$</td>
<td>(Mpa)</td>
</tr>
<tr>
<td>$n = 0.2446$</td>
<td></td>
</tr>
<tr>
<td>$K=145.89$</td>
<td>(Mpa)</td>
</tr>
</tbody>
</table>

| شکل (2): نمودار نشان کردن پیچه‌ای با سختی 80 SA | شکل (3): مجموعه پیچه‌ای پایینی | مجموعه پیچه‌ای بالایی | ماتریس | ترکیب | لایه پلی پورتان | نورزیگ | فلز |
5-1 چروک‌گذی در فرآیند شکل‌دهی چند نقطه‌ای

در فرآیند شکل‌دهی چند نقطه‌ای، میزان ماده جریان یافته به محض قطعه می‌تواند کم‌کم کند، داده شده را تحت تأثیر قرار دهد. جریان بسی از هد ماده به داخل

نوع نماس مانی مسطح ورق با سطح‌های پلی پورتان و

سطح قابل از نوع سطح به سطح انتخاب شده است.

4- طراحی و ساخت قالب شکل‌دهی چند نقطه‌ای

شکل (4) مجموعه قالب شکل‌دهی چند نقطه‌ای

ساخته شده در این پژوهش را به صورت مجزا از هم نشان می‌دهد. ابتدا قبل از شروع ساخت، اندازه‌های مطلوب اجزای مختلف قالب فوق با اجرای یکسیر شیب سازی تعیین گردید. قطعات بین یکی از مهورهای فاکتورهای تأثیر

گذار در فرآیند شکل‌دهی چند نقطه‌ای می‌باشد، از نتایج

بسته آمده از شیب سازی‌ها این نتیجه گیری حاصل شد

که استفاده از بین با قطر 12 میلی‌متر منجر به شکل گیری قطعه با کیفیت متمایزی خواهد گردید. بنابراین در ساخت

قالب فوق مجموعاً از 200 عدد بین سر کروی با قطر

میلی‌متر استفاده شده است. سایر اجزای قالب برش طبق

مقادیر ارائه شده در جدول (1) ساخته شده است. پیش‌

 مستقل از هم بوده و ارتفاع هر یک از آنها به استاندارد

تئوسیم می‌باشد. بنابراین می‌توان با تنظیم ارتفاع هر یک از

بین‌ها سطوح با انحنای‌های متفاوتی را بسته‌اند. از

عدد فرآوری تامین نیروی ورق‌گیر استفاده شده است. با

استفاده از فناوری با مشخصات متفاوت، امکان اعمال

تیپ‌های ورق‌گیر متفاوت در آزمایشات وجود داشت. برای

انجام آزمایشات از یک پرس‌های‌رولیکی مدل S.S

ظرفیت 200 نت استفاده شد. شکل (5) قالب شکل‌دهی

چند نقطه‌ای را در حالت نصب بر روی دستگاه پرس

دیده می‌باشد.

شکل (5): مجموعه قالب شکل‌دهی چند نقطه‌ای در حال نصب بر روی دستگاه پرس.
نشریه فراپنده‌های نوین در ساخت و تولید، سال دوم، شماره یک، بهار 1392

همانگونه که در بخش قبل ذکر شد برای تامین نیروی ورق از 4 عدد فن استفاده شده است که در حین شکل‌دهی

مقایسه چروک‌بندی در قطعه می‌گردد.

قابت منجر به ایجاد چروک‌بندی در قطعه می‌گردد.

حافظه عدد جراین کافی فلز منجر به ایجاد پارگی در قطعه‌کار خواهد گردد. هم‌اکنون که در بخش 2 اشاره

گردد فرآیند شکل‌دهی جنگ نطفاتی می‌تواند به دو

شکل (6): نمونه شکل داده شده در فرآیند شکل‌دهی جنگ نطفاتی

بدون استفاده از ورق گیر (الف)- تجربی (ب)- شیبی سازی.

شکل (7): نمونه شکل داده شده با اعمال نیروی ورق گیر

نمونه شکل داده شده در آزمایشات و شیبی سازی را به

استفاده از ورق گیر نشان می‌دهد. ملاحظه می‌شود که در

اثر عدم استفاده از ورق گیر، اعوجاج شدیدی در ورق ایجاد

شد است. نتایج تحقیقات گزارش شده از سوی محققان

مختلف نشان می‌دهد که ورق گیر یک نقش کلیدی را در

کنترل جراین فلز در فرآیند کشش عمق معمولی دارد و با

انتحاب مناسب نیروی ورق گیر می‌توان از ایجاد

چروک‌بندی جلوگیری کرد و وقفه پارگی را به تأخیر

انداخت. [V] به‌ناریان شکل‌دهی قطعات تحت اعمال

نیروهای ورق گیر متفاوت مورد آزمایش قرار گرفته است.
بهار 1392

نحوه فرآیندهای نوین در ساخت و تولید-

صل دوم- شماره یک- بهار 1392

شکل (8): قطعات زیر پوشش از KN 1 می توان قطعات اعمال نیروی ورق گیر بالاتر از KN 1 افزایش پیدا کرد و به حداقل می رسند. شکل (9) نمشه شکل داده شده تحت اعمال حداکثر نیروی ورق گیر N 300 را نشان می دهد. همانگونه که ملاحظه می گردد به اعتیاد و یا کاهش depicts اعمال نیروی ورق گیر اعمال شده و در نتیجه جریان بیش از حد ورق، چرخ لامپی شده و خروجی جریان بیش از حد ورق، چرخ لامپی شده و خروجی اعمال نیروی ورق گیر مطلوب اجرا شده است. به منظور به دست آوردن نیروی ورق گیر مطلوب با محاسباتی پیچیده بیش از حد ورق، چرخ لامپی شده و خروجی اعمال نیروی ورق گیر مطلوب اجرا شده است. به منظور به دست آوردن نیروی ورق گیر مطلوب با محاسباتی پیچیده بیش از حد ورق، چرخ لامپی شده و خروجی نمایش داده می شود. 2-5 عکس روی تورفینی مزین اصلی فرآیند شکل دهی چند نقطه‌ای در مقایسه با عکس نمایش و آماده‌شده از شیب سازی (ب) یافت.

شکل (9): نمشه شکل داده شده تحت اعمال N 300 KN (الف) - شیب سازی (ب) تورفینی.
مشاهده نمی‌شود. همچنین توزیع نشکن‌ها در نقاط مختلف قطعه اتفاق افتاده است.

روش‌های استاندارد، انتظار بتری بی‌الاید آن می‌باشد.

ولی استفاده از این تکنیک نیز معمولاً را به همراه دارد.

عبارت ترفنگی از جمله عوامل مختلف فرآیند شکل‌دهی چند نقطه‌ای می‌باشد. همانطور که در جهت‌های قبل ذکر شد در این تکنیک سطح پیوسته قابل‌های صلب است. با مجموعه‌ای از پیوسته‌های گستره قابل تنظیم جایگیری می‌گردد. عبت ترفنگی در اثر تنش می‌باشد و نابودی بین ورق و پین با ایجاد شد. هر چقدر از پین‌ها یک‌پذیری متغیری را بر روی ورق اعمال می‌کند که این نیروهای متغیری گستره منجر به ایجاد تغییر شکل موضعی شدیدی است.

شکل (10): ورق عبت ترفنگی را در آزمایش تجربی و شبه‌یایی نشان می‌دهد. همان‌طور که ملاحظه می‌شود در نقاط موضعی بین‌های داشته و وضعیت تنش در این نقاط نسبت به سایر قسمتهای قطعه حساس‌تر است. برای جلوگیری از ایجاد عبت ترفنگی می‌پذیرایی نیروهای وارد شده از طرف پین‌ها هرکدام سطح ورق توزیع شود. هنگام این منظور، دو لایه پلی پورتان بان سختی SA 80 ساین سطح‌های ورق و مجموعه‌ای بین‌های بالایی و پایینی قرار داده شده است. نمونه شکل داده شده در آزمایش تجربی و شبه‌یایی در شکل (11) قابل مشاهده می‌باشد. مطالب شکل مذکور نمونه شکل داده شده دارای صافی سطح

پیاس مانسی پوده و هیچ‌گونه عبت ترفنگی در قطعه

شکل (10): ورق ترفنگی در اثر تنش مانسی و نابودی بین‌ها با سطح ورق (الف) - شبه‌یایی (ب) تجربی.

شکل (11): نمونه شکل داده با استفاده از دو لایه پلی پورتان

با سختی SA 80 (الف) - شبه‌یایی (ب) - تجربی.
ضخامت غیر یکنواختی می‌باشد و نقاط تورفتگی بوضوح بر روی منحنی قابل تشخیص می‌باشد. بنابراین، در این نقاط، تغییر در شکل موضعی که از طرف بالا و ایجاد تغییر شکل موضعی کالأش شکل عکست آن واقع شده است. (شکل 14) منحنی‌های توزیع ضخامت به‌دست آمده از نتایج تجربی و شبیه‌سازی نمونه شکل داده شده با استفاده از نمونه‌های پرتابت و پایین داده شده. نقاط شکل فوق، استفاده از نمونه پرتابت و نظر به شکل گیری تنوعی با توزیع ضخامت یکنواخت گردیده است و هیچ گونه نازک بودن موضعی در قطعه مشاهده نمی‌شود که علت این امر، توزیع یکنواخت نیرویی متغیر وارد شده از طرف بالا بر روی هر قطعه طرفی در نتایج استفاده از نمونه پرتابت از دیدگاه منجر به شکل گیری تنوعی می‌باشد. همچنین از شکل‌های (13) و (14) می‌توان مشاهده کرد که مطابقت نسبتاً خوبی بین نقاط توزیع نجیبی و نتایج پیش‌بینی شده از شبیه‌سازی‌ها بر قرار است که نشان دهد مدل اجرایی محدود توزیع داده شده‌امکان‌پذیر است.

3-5 بررسی توزیع ضخامت

به منظور اندازه‌گیری توزیع ضخامت نقاط شکل داده شده، نمونه‌ها در جهت محور‌های مختلف بریده شده و توزیع ضخامت در دو مسیر نشان داده شده در شکل (12) اندازه‌گیری شده است. (شکل 13) منحنی‌های توزیع ضخامت به‌دست آمده از نتایج تجربی و شبیه‌سازی نمونه شکل داده شده بدون استفاده از نمونه پرتابت و نشان می‌دهد. همان‌گونه که از شکل فوق ملاحظه می‌شود به عنوان نمونه‌هایی شکل داده شده در راستای یک دور مسیر اندازه‌گیری دارای توزیع بر روی منحنی قابل مشاهده می‌باشد. (شکل 13) منحنی‌های توزیع ضخامت نمونه شکل داده شده بدون استفاده از نمونه پرتابت در راستای (الف) مسیر موازی محور X (ب) - مسیر موازی محور Y.
قضاطع با توزیع ضخامت یکنواخت می‌گردد و کاهش

ضخامت بسیار کمی در قطعه بوجود خواهد آمد.

۴- با توجه به انعطاف‌پذیری بلای فرآیند شکل دهی، و تغییر در نمایشگاهی ضخامت قابل قبولی با نتایج شده سازی دارد. بنابراین شیب سازی اجرای محدود می‌تواند به عنوان یک ابزار پیشگیرانه قوی برای مطالعه بیشتر

۵- نتایج آزمایشگاهی مطالعه قابل قبولی با نتایج شبه سازی مورد استفاده قرار گیرد.

۶- تحقیج گیری

در این مقاله اصول بنیادی فرآیند شکل‌دهی چند تغییر-

ای مورد بحث قرار گرفت با طراحی و ساخت یک قلب-

شکل دهنده چند تغییرات، امکان شکل دهنده یک قطعه ورقه-

ای با استفاده از تکنیک‌های صورت تجهیز و شیب

سازی مورد آزمایش قرار گرفت. نتایج بدست آمده به-

شرح زیر می‌باشد:

۱- جلوگیری و توزیعی از مشاوئین عیوب به-

وجود آمده در شکل‌دهی قطعات ورقه‌ای با روش-

دهی چند تغییرات می‌باشد. با اعمال نیروی قرار گیر-

مناسب می‌توان از وقوع جلوگیری کرد. عیب-

توزیعی در نتیجه تماس مستقیم و نابینایی بین‌ها با سطح

ورق و ایجاد تغییر شکل مطلوبی شده در نقطه‌ی تماس-

بین‌ها و بر کاهش می‌آید. با استفاده از دو لا این استیک

و در نتیجه توزیع نیروهای منجر که به کل سطح ورق-

می‌توان قطعات سالم و با صافی سطح بالایی را شکل دهی-

کرد.

۲- بررسی توزیع ضخامت قطعات شکل داده شده در-

دو حالت استفاده از لایه پیوترتان و عدم استفاده از آن-

نشان داد که در صورت عدم استفاده از لایه پیوترتان،-

نمودن شکل داده شده دارای توزیع ضخامت غیر یکنواخت-

خواهد بود. استفاده از لایه استیک منجر به شکل کیری

۴۷